CSC 498: Vision-based Robot Control for

Human Robot Interaction

Lucas Franco

The College of New Jersey, Ewing NJ 08628, USA

francol4@tcnj.edu

Abstract. This project presents a robotic system that plays a physical, over-the-board
chess game using real-time computer vision, machine learning, and robotic arm con-
trol. A webcam-based vision system detects a human player’s moves by predicting if
a piece resides in a square on the chessboard using a support vector machine (SVM)
trained with RGB pixel values and edge features. Detected moves are played through
the Chess Arena GUI running a chess engine, whose responses are executed by an
Open-manipulator-X robotic arm. Inverse kinematics (IK) was applied to generate joint
trajectories using SLERP-interpolated world positions, but the generated trajectories
were inaccurate near board edges, so precise joint angles of the actuators were manually
calibrated. The final system achieved 90% in move detection and near 100% success
in physical execution of the moves using hard-coded joint angle-based motion plans.
Future improvements may include piece type recognition and the use of depth cameras

or deep learning models like YOLOvS8 for multi-class classification.

Keywords: Human-robot interaction - Computer vision - Machine learning - Support

vector machine - Robotic manipulation - ROS

2 L. Franco

1 Introduction and Motivation

The integration of artificial intelligence, machine learning, and robotics presents opportunities for
developing complex interactive systems. A game like chess played on the board serves complex
task testing such as perception, control, and real-time movement and decision making. This project
presents a full stack system in which a robotic arm autonomously plays chess by observing the state
of the board through a camera and physically executing moves in response to a human player.

Chess provides an ideal platform for this kind of interaction due to its clearly defined structure.
Chess also has a rich history with Al, one of the most famous milestones in artificial intelligence
was IBM’s Deep Blue defeating world chess champion Garry Kasparov in a six-game match in 1997.
This moment marked the first time a machine demonstrated strategic dominance over a top human
player, and it started a wave of innovation in Al-driven game playing. Since then, chess engines
have grown exponentially in strength and efficiency due to modern hardware, neural networks, and
improved search algorithms. Today’s engines like Stockfish [2] consistently outperform even the
best human players in purely digital environments.

However, unlike digital chess applications, a chess-playing robot must contend with noisy real-
world data, varying lighting conditions, shadows, and mechanical precision. This project seeks to
tackle these issues by developing a vision-based recognition system that detects a player’s move
and triggers an appropriate physical response from a robot.

This project explores the integration of real-time classification of game state and motion plan-
ning for robotic arms. The final system incorporates multiple components: a calibrated webcam
for board monitoring, a lightweight machine learning model for square classification, and an open-
manipulator-X robotic arm for physical manipulation of chess pieces. This full-stack system presents
an autonomous chess playing opponent utilizing the latest and greatest chess engines. Enabling play
against a variety of different engines over a physical board in real life.

This project integrates several key components into a cohesive and functional system. It includes
a real-time vision system for classifying whether individual squares on a chessboard have a piece or
not, using a support vector machine (SVM) trained on RGB and edge detection features. A move
detection algorithm compares predicted square states from each frame in real time and validates

actions against the internal game state using a chess engine integrated via the Universal Chess In-

2. PRELIMINARY WORK 3

terface (UCI) protocol, supported through the Chess Arena GUI [1]. Physical execution is handled
by an OpenManipulator X [7] robotic arm controlled through ROS, with movement paths transi-
tioned from an early SLERP-based inverse kinematics approach to precisely calibrated hard-coded
trajectories for accuracy and consistency. To ensure alignment between visual input and physical
layout, an interactive calibration tool allows the user to manually adjust grid boundaries as inter-
polation across four corners of the chessboard from our frame can come with slight error. Together,
these contributions form a full-stack system that connects computer vision, decision-making, and

robotic motion into a platform for human-robot interaction through chess.

1.1 Paper Outline

The remainder of this report is organized as follows. Section 2 reviews prior work related to vision-
based board game interfaces and machine learning classifiers for visual prediction. Section 3 presents
the full methodology. Section 4 details the experiment design and implementation, while Section
5 analyzes the results and analysis including limitations of current approach. Section 6 proposes

future directions, and Section 7 concludes the report.

2 Preliminary Work

2.1 Initial Challenges

This project began when Dr. Yoon introduced me to the idea of utilizing robot arms to play chess.
Intrigued by this challenge, I began exploring the concept before the semester started and came
across a project on GitHub [4], in which the author developed a robotic system that plays chess
utilizing a webcam to compare the differences between pixels from frames to detect the movement of
the piece, then utilizes a chess engine for opponents response, and the 4-degree-of-freedom (4DOF)
arm makes the move. This discovery motivated me to develop a proof-of-concept system prior
to the start of the semester knowing that time was limited. The first step involved calibrating
the camera view of the board. I initially attempted to use OpenCV’s built-in chessboard corner
detection functions. However, these consistently failed on my real board setup due to differences in
square textures, lighting, and board style, which deviated from the ideal chessboard patterns for

which these algorithms are made.

4 L. Franco

As a result, I implemented a manual calibration system where users click the four corners of
the board in a fixed order. These corner points were interpolated to generate an 8x8 grid of square
coordinates, allowing pixel-based segmentation of each square for feature extraction and labeling.
This manual method proved to be more flexible across various board orientations and lighting

environments.

2.2 Feature Engineering and Random Forest Classification

Once calibration was accurate, and I could collect the four coordinates (z,y) relative to the we-
bcam frame for each of the 64 squares on the chess board, I moved onto feature extraction and
classification. For each square I computed a large set of visual features from each grid cell pixels,

assuming that more information would lead to better performance. Features include:

— Mean and standard deviation of HSV values: Let P = {p1,p2,...,pn} denote the set
of n pixels in a square. Each pixel p; is represented in HSV space as v; = (hy, s;,v;). For each

channel ¢ € {H,S,V}, we compute:

n

1 — 1
e = n ;Ci» Oc = " Z(Cl — f1c)?
1=

i=1

These six values (um, 1s, pv, o, 0s, oy) summarize color information in a compact form.

— Grayscale intensity statistics: Grayscale conversion is performed using the weighted formula:
1; =0.2989 - R; + 0.5870 - G; + 0.1140 - B;

where I; is the grayscale intensity of pixel p;. The mean and standard deviation of {1, I, ..., I),}
are then computed in the same way as HSV above.
— Edge detection values (Canny): The Canny edge detector is applied to the grayscale version

of the square. The output is a binary edge map FE, from which we compute the edge density:

1 n
Edge Density = — g E;
n
i=1

where E; € {0,1} indicates whether the pixel p; lies on an edge.

2. PRELIMINARY WORK 5

— Binary bitmap features: A binary mask is extracted from a central k x k region (e.g., k = 10)

of each square. Each pixel is converted to binary using intensity:

1 ifL>7
B; =

0 otherwise

The resulting k£ x k bitmap is flattened into a vector and used as input features.

— Normalized color histograms: For each HSV channel, we compute a histogram H. with b
bins (e.g., b = 16). Each bin count h; is normalized by the total number of pixels in the square

to produce a probability distribution:

hs

HY) — bij
Zk:1 hk

C

for 5 =1,2,...,b. This ensures that the histogram features are scale-invariant and suitable for

machine learning.

For classification, the model predicted piece type and class.

I trained a Random Forest classifier with this data, which seemed well suited for the task. I
needed a lightweight model that can handle mixed feature types, predict in real-time frames, and
work well with modest amounts of data. Testing different hyper-parameters, such as the number
of stumps ranging from 50-450, and trained by collecting frames from the board as normal chess
layout with the labels being the respective piece type and color. This wasn’t accurate at predicting
what specific pieces were, but it could recognize the difference between if a piece was in the square
or not. This approach was also fairly slow in real-time frame predictions. From here, instead of
classifying the piece type or color, the training was simplified to only contain labels 1s or Os that
detail whether or not a piece existed in the square. This worked well, predicitng in real-time with
slight frame delay, accurately predicting if a piece was in the square about 65% of the time. The
remaining issues are with the lighting and camera angle of the pieces. If the piece was to tall it
would interfere with the data being collected from the squares around it and pieces that match the

square color on the board were harder to detect.

6 L. Franco

I also tested other models, such as neural networks using the same features and training system.
Wile they achieved comparable accuracy, the prediction time was significantly slower making it

impractical for seamless real-time use.

2.3 Chess Engine Integration and Depth Tuning

Modern chess engines like Stockfish employ a hybrid approach that combines a minimax search
algorithm enhanced by alpha-beta pruning with a neural network-based evaluation function known
as NNUE (Efficiently Updatable Neural Network). While the minimax tree search explores millions
of possible future move sequences, the NNUE provides a more accurate evaluation of board positions
compared to traditional handcrafted heuristics. At each position, the engine computes a numerical
score reflecting the strategic quality of the board state, factoring in material balance, piece activity,
king safety, and more. The “depth” setting in engines refers to how many half-moves (plies) ahead
the engine searches. While deeper searches typically yield stronger play, they increase computation
time. For the purposes of this project—where engine responses must be issued in near real-time
before system state validation—I limited Stockfish’s depth to 8. This provided a practical balance

between strategic depth and responsiveness.

2.4 Game State Validation and Engine Integration

Once I had a working system for detecting whether squares were occupied, the next step was to
actually figure out how to interpret those predictions into valid chess moves. In each frame, the
classifier is run independently on all 64 squares of the board. For each square, visual features are
extracted and passed into the model, which predicts whether a piece is present (1) or not (0).
These individual predictions are then combined to construct a complete 8x8 binary board map
representing the current state of the game. Then store the predicted board state to be compared to
the next board state after the move had been completed. To do this in real-time there is a stable-
frame counter which wouldn’t predict on the squares until movement has been stopped. This was
essential so it doesn’t predict with hands or shadows moving across the board. Then, comparing the
two frames can figure out which square had lost a piece and which had gained a piece, detecting
“from” and “to” squares of the move. After a potential move is found, it is verified as legal to

our current internal game state (utilizing python chess library) and then uses pyautogui to type

3. PROBLEM DEFINITION AND METHODOLOGY 7

the move into the Chess Arena GUI. After the move was properly played in the GUI and a engine
responded it presses 5 inside Arena to copy the current games PGN log to the clipboard. The move
log is stored in PGN (Portable Game Notation), a standard plain-text format for recording chess
games. Each move in the PGN is listed in sequence and includes both White and Black’s moves for
each turn. To extract the engine’s response, I parse the PGN string copied to the clipboard and
isolate the latest Black move (which is the engine’s response after a human player’s White move).
From this move, I extract the “from” and “to” squares (e.g., e7 to e5) using regular expressions.
This vision system wasn’t perfect, mainly due to the false-positive predictions from the random

forest classifier, but laid the groundwork for future work.

3 Problem Definition and Methodology

The main goal of this project is to develop an integrated robotic chess-playing system that com-
bines computer vision, game logic, and robotic manipulation. Specifically, the system aims to: (1)
accurately detect and track chess pieces on a physical board using computer vision techniques;
(2) translate the player’s physical move into an updated internal game state using a structured
representation of the board; (3) obtain the optimal response move by querying an external chess
engine; and (4) physically execute the engine’s response using the OpenManipulator-X robotic arm

with high precision and reliability.

3.1 Vision System

The vision system is responsible for detecting whether or not each square on the chessboard is
occupied by a piece. My original approach used a large feature set—HSV values, grayscale statistics,
edge detection, binary bitmaps, and color histograms—and trained a Random Forest classifier to
distinguish between occupied and empty squares. It worked decently but struggled with lighting,
shadows, and similar piece/board color combinations, not to mention the slow inference times that
made real-time prediction difficult.

After some testing and discussion, I ended up simplifying both the data and the model. Instead
of collecting tons of features, I limited the training data to just an RGB vector and edge detection

mask from the center region of each square. This reduced the noise in the data and made the

8 L. Franco

Vision System Game Logic Robotic Control
Webcam Input Game State Comparison
Square ile saf
a SVM Piece Detection Current game state Compile safe

trajectorty to
execute move

Detection

S,

Publish whole
trajectory to

Process qnode
d2d4

Executed in Chess

Arena GUI Scrape StockFish
Engines response

SVM Piece Detection

Qnode publishes
each trajectory point
to the controller

S

Fig. 1. System architecture: visual pipeline from webcam input to robotic arm execution.

model faster. For training, I used a small labeled dataset—images of the board in various common
configurations (half-full both sides, standard starting layout)—and labeled each square as either 1

(occupied) or 0 (empty) .

I also swapped the model from a Random Forest to a Support Vector Machine (SVM), since
we were solving a binary classification problem and needed faster predictions. With RGB plus edge
values as input, the SVM performed much better in terms of speed and held up reasonably well
in accuracy—even under challenging lighting conditions. The main limitation was that the model
could only predict whether a square had a piece or not; it couldn’t identify what kind of piece it

was. But for the purposes of move detection, this worked fine.

Compared to the Random Forest, the SVM made faster predictions in real-time and achieved
higher accuracy. The main issue was with false negatives: When a piece blended into a square tile
of a similar color (e.g., a black rook on a dark square), the model would sometimes fail to detect
that a piece was present. To workaround this, we printed out a board that has discolored square
tiles, so that our pieces stand out. This effectively made our SVM model predict with about 100%

accuracy.

3. PROBLEM DEFINITION AND METHODOLOGY 9

I also made major improvements to board calibration. Since interpolation of 64 squares across 4
calibrated coordinates on the frame comes with some error, especially with differing camera angles,
I implemented a method where you can drag each squares corner point to line up perfectly on the
frame. The algorithm implemented needed to be able to discern which squares this corner point
belonged to and adjust its position in each of the squares. This helped align the gird more precisely
and ensured better feature extraction.

In real-time operation, the vision pipeline runs the classifier on each square every frame. The
predicted states are compared across frames, and moves are only detected once the system sees a
stable board state for several consecutive frames. This helped filter out false detections caused by

hands or shadows.

3.2 (Game Logic

The game logic algorithm is responsible for maintaining the internal representation of the chessboard
detecting human moves from the vision system output, and scraping the chess engines response
from the Arena GUI. The system uses the python-chess library to manage board state, validate
legal moves, and parse algebraic notation.

To detect a move, the classifier outputs a binary 8x8 matrix each frame, where each cell repre-
sents whether a piece is present. The current prediction is compared against the system’s internal
game state to find differences, which are interpreted as moves. This comparison identifies potential
“from squares” where it looks to see if any 1s from our internal game state’s board turned to 0
at the same position in our classifiers predicted matrix. We also identify potential “to squares”
detailing the opposite, Os turned to 1 at the same position across internal and predicted matrices.
Ideally there should be one from and to squares found, but to allow for some noise from the model
if multiples are found we check each from square to each to square as a move and verify the legal
moves found. This algorithm accurately detects players moves.

One challenge involved detecting captures accurately. Because the board may look identical
before and after a capture (e.g., a black pawn captures a white pawn and stands in the same
square). To solve this, the system tests candidate capture moves by simulating them on a copy of
the internal board and comparing the predicted outcome with the new frame’s predictions. The

best-matching move—accounting for material value and minimal board state difference—is selected.

10 L. Franco

While this works okay, the ambiguity problem here may not account for when someone makes a
move that isn’t the best for material value resulting in a wrong move being tracked.

Once a valid human move is detected, the system performs that move directly inside the Arena
GUI by simulating a mouse drag between the two corresponding squares. This allows the engine to
register the human’s move exactly as if a person had made it with a mouse.

To do this accurately, the system first calibrates the Arena board window. During setup, the
user clicks the four corners of the on-screen board—top-left, top-right, bottom-right, and bottom-
left. These points are used to calculate the screen-space dimensions of the board. The program
then interpolates the position of all 64 square centers using linear mapping across the calibrated
quadrilateral. Once the square coordinates are known, the system can map any move (like e2 to
ed) to precise pixel locations on the screen.

After playing the human move, the program sleeps for two seconds waiting for the engine’s
response. To capture this response, the system reads the Arena move list from the clipboard. It
simulates a keypress (F5) to refresh the move history and parses the text using regular expressions
to extract the most recent black move in standard algebraic notation.

This move is then converted to UCI format and applied to the internal board state using the
python-chess library. If the move is valid, the system stores both the move and its data, including
whether it was a capture, so that the physical robot arm can replay the engine move on the real
chessboard. If it was a capture, the robot will execute an extended sequence to remove the captured

piece before placing the new one.

3.3 Robotic Control

The robotic control system is responsible for executing the selected move of the chess engine on
the physical board using the OpenManipulator-X [7] robotic arm. The system needed to be able
to reliably pick up pieces and place them on different squares with high precision while avoiding
other pieces.

The OpenManipulator-X robot arm, has a 4-degree-of-freedom (4DOF') with grippers attached
to the end effector. This offers a good balance of flexibility and precision, making it well suited for
the task of playing chess. Additionally, it is Robotic Operating System (ROS) [3] compatible and

is a robot platform that consists of open source software and hardware.

3. PROBLEM DEFINITION AND METHODOLOGY 11

The initial challenge was determining how to create a consistent way to map each of the 64
squares to the arm’s joint angles, so it can be generalizable to various chess boards/setups. The
program OpenManipulator control GUI [5], has the ability to send the robot arm to various positions
through controlling the angles of each of the four joints.

Implemented custom forward and inverse kinematic scripts using python (ikpy library [6]).
These were essential for calculating the end-effectors position and orientation given joint angles
(forward kinematics) and determining the joint angles required to reach a specific position and
orientation (inverse kinematics).

Through the OpenManipulator-X control GUI program, recorded the joint positions of the robot
arm at the four corners of the chess board. Using forward kinematics on these four positions to cal-
culate the x,y,z world positions relative to the robot base and there perspective orientations. These
four corner points then get mapped to the center points of each square using linear interpolation.
This establishes x,y,z coordinates for each of the 64 squares. Then using SLERP (Spherical Linear
Interpolation) to interpolate the joint orientations across the board.

After the chess engines move had been played, it denotes specific from and to squares and
retrieves the interpolated world position and orientation of these squares. Creating a trajectory as

follows:

1. Move above the from square.

2. Lower to the from square.

3. Raise back above the from square.
4. Move above the to square.

5. Lower to the to square.

6. Raise back above the to square.

7. Return to idle home position.

Trajectory for Capture Moves For capture moves, the robot follows a longer sequence to

remove the captured piece before executing the move:

1. Move above the to square (location of the captured piece).

2. Lower to the to square.

12 L. Franco

3. Raise back above the to square.

4. Move to an off-board drop-off position.

5. Lower to the ground to place the captured piece.

6. Raise back above the drop-off position.

7. Continue with the standard move trajectory by performing steps 1-6 from the procedure above

to complete the piece relocation.

Once the trajectory is compiled, it used inverse kinematics to transition our world positions
and orientations back to joint angle positions. From here, augmented the open manipulator control
GUI program to use a ROS publisher-subscriber system to publish the trajectory of joint angle
positions to the GUI program which is built using C++.

The Python script acts as a ROS publisher, sending joint trajectory messages over a custom
topic. The augmented C++ GUI program subscribes to this topic and listens for trajectory com-
mands. Once received, the controller processes the trajectory and moves the arm accordingly closing
the gripper at specific points. This integration allowed for efficient and responsive execution, com-
bining the flexibility of Python-based trajectory planning with the low-latency control offered by
the C++ backend.

While this approach worked reasonably well for central squares, it struggles around the edges and
corners of the board. The non-linear nature of joint configurations near the board edges caused the
interpolated trajectories to be inaccurate, leading to awkward and sometimes physically impossible
poses. As a result, the arm often failed to reach the target square correctly, especially when moving
diagonally or to the far corners.

Due to the inconsistencies with this approach, I had to manually calibrate hard-coded joint angle
positions for each of the 64 squares. This ensures that each square has a reliable joint configuration.
While this is very accurate, it deems that once each square had been calibrated the chess board
cannot be moved making this approach very specific for our board and not generalizable to new
setups.

One unexpected challenge involved the robot’s grippers. The original grippers that came with
the OpenManipulator-X robot arm were too wide to securely grasp chess pieces. To address this, 1

leveraged the open-source hardware designs available for the OpenManipulator-X and 3D-printed

4. EXPERIMENT DESIGN AND EXECUTION 13

custom grippers that can close tighter. However, the printed grippers lacked the necessary height to
pick up pieces without disturbing neighboring ones. To compensate, we attached thin metal welding
strips to the ends of the 3D-printed grippers using double-sided tape. This adjustment allowed the

grippers to reach down between pieces without interference.

4 Experiment Design and Execution

4.1 Objectives

The primary objective of this experiment is to evaluate the full-system performance of the chess-
playing robotic system. This includes the accuracy of the vision system in detecting the presence
of chess pieces, the correctness of move detection logic for both standard and complex moves
(e.g., captures and castling), and the precision of the robotic arm’s execution. Additionally, the
experiment aims to assess the system’s stability and responsiveness across full-length games under

varying conditions.

4.2 Performance Targets
This evaluation focuses on verifying whether the system meets the following performance targets:

1. Piece Detection Accuracy: The vision system should correctly detect the presence of pieces
on the board with over 99% accuracy under controlled lighting conditions.

2. Move Detection Accuracy: The system should correctly identify legal human moves—including
standard, capture, and castling—with at least 90% accuracy.

3. Response Time: Each full move sequence (detection + execution) should complete within 30

seconds.

4.3 Experimental Setup

The experimental setup involves both hardware and software components configured to operate as
a cohesive real-time chess-playing system. The hardware includes the OpenManipulator-X robotic
arm with four degrees of freedom, a high-resolution webcam mounted above the board, and a

standard tournament-sized chessboard.

14 L. Franco

The system was developed and tested on Ubuntu 20.04 LTS using ROS Noetic. Hardware com-
ponents included the OpenMANIPULATOR-X robotic arm with a U2D2 communication interface
and a mounted high-resolution webcam for top-down board observation. The software was written
in Python 3.8 and integrated with ROS for communication and motion control.

To support robotic manipulation, official ROS packages for OpenMANIPULATOR-X were
downloaded and compiled from the Robotis GitHub repositories, including core control packages,
message definitions, and simulation tools. The workspace was built using catkin make, and appro-
priate dependencies such as dynamixel-sdk, robotis-manipulator, and moveit were installed.

Two additional packages were integrated into the workspace:

1. A custom chessML Python package for visual recognition, move detection, and system logic.
2. A modified version of the OpenManipulator control GUI, which was extended to receive joint

trajectory messages and execute them through the Dynamixel SDK.

All relevant source code, setup steps, and configuration instructions are documented in a public
GitHub repository at https://github. com/LucasFrancol2/Vision-Based-Robotic-Control. This
repository provides a full guide to installing ROS, integrating the control and vision systems, and

launching the entire platform for real-time chess game play.

Fig. 2. System architecture illustrating the flow from visual input to robotic arm control.

4. EXPERIMENT DESIGN AND EXECUTION 15

4.4 Data Collection and Processing

During testing, real-time webcam frames are processed to generate an 8x8 binary occupancy matrix,
where each cell represents whether a square is occupied. These matrices are stored and compared
across frames to identify move transitions. Only after the board is stabilized for several consecutive
frames does the system register a move, helping eliminate noise from hand movement or lighting
flicker.

Once a move is identified, it is validated for legality and passed to the robotic controller, which
executes the response. Logs of detected moves, actual ground-truth moves, and execution times are

collected for performance evaluation.

EO00EEARE®E

(a) Vision system’s prediction matrix. (b) Chess Arena GUI after human move.

Fig. 3. Visual pipeline: (a) Frame processed through the vision system, and (b) Arena GUI reflecting the updated
internal game state.

4.5 Testing Scenarios

To assess robustness and generalizability, the system was tested under a variety of conditions:

— Lighting Variations: Both bright fluorescent lighting and dim ambient lighting scenarios.

— Camera Orientation: Angles were adjusted within +10° to simulate misalignment and test
calibration resilience.

— Game Stages: Tests included openings, mid games with frequent captures, and sparse endgames.

— Special Moves: Castling, en passant, and pawn promotion sequences were manually triggered

and tracked.

16 L. Franco

4.6 Performance Metrics

— Detection Accuracy:

Number of Correct Detections
A = x 100
ceuracy Total Detections %

— Move Prediction Accuracy:

Number of Correctly Predicted Moves

100
Total Moves % 7

Prediction Accuracy =

— Response Time: Time taken from move detection to execution (seconds).

— Stability: Number of move errors per game.

4.7 Procedure

The experimental procedure involved initializing and testing the full chess robot system through
a complete game cycle. First, the system was initialized by launching all required ROS nodes and
calibrating the board. Calibration was done by manually selecting the four corners of the board in
the webcam frame and the four corners of the Chess Arena GUI.

Next, the vision system processed real-time frames from the webcam to detect the presence of
chess pieces. The initial state of the board was stored internally, and the system began waiting for
a valid human move. When a move was detected through changes in the binary occupancy matrix,
the system validated the move against the internal chess logic. Once confirmed, it was executed in
the Chess Arena GUI and the engine’s response was parsed.

The robotic arm then physically executed the engine’s move by moving pieces from the source
square to the destination square using the calibrated trajectory pipeline. This process was repeated
for each subsequent move in the game.

During testing, logs were maintained to compare predicted vs. actual moves, track timing in-
formation, and evaluate physical execution accuracy. The tests were repeated under varying light-
ing conditions, different camera angles, and in scenarios involving standard, capture, and castling

moves.

5. EXPERIMENT ANALYSIS AND RESULTS 17

Fig. 4. Robot arm moving piece in real time.

5 Experiment Analysis and Results

5.1 Introduction to Analysis

In this section, we analyze the performance of the chess robot system based on quantitative metrics
and qualitative observations. The primary evaluation criteria include detection accuracy, move

prediction accuracy, system stability, and response time.

5.2 Quantitative Analysis
The system’s performance was measured in multiple aspects, including;:

— Piece Detection Accuracy: The ability of the SVM model to correctly identify piece presence
in each square.

— Move Prediction Accuracy: The correctness of the detected moves compared to the actual
human moves.

— Response Time: The time taken from detecting a move to completing its execution.

The following table summarizes the results collected over 10 games:

18 L. Franco

Table 1. Performance Metrics of the Chess Robot System

Metric Mean Value|Standard Deviation|Minimum | Maximum
Detection Accuracy 97.8% 1.2% 95.0% 99.5%
Move Prediction Accuracy| 91.3% 2.5% 87.0% 95.2%
Response Time 24 sec 2.5 sec 19.0 sec | 33.5 sec

5.3 Qualitative Analysis

The system was tested under various conditions, including changes in lighting, board orientation,
and different game scenarios. For each condition, the model had to be retrained in that condition as
it is not generalizable. The vision system performed reliably under consistent lighting but showed
reduced accuracy under unseen conditions. The camera angle is not affected, is more generalizable,

and proved to test well with unseen angles of the board.

5.4 Performance Comparison

— The detection accuracy exceeded expectations, achieving a mean accuracy of 97.8%.

— Move prediction accuracy was slightly higher than hypothesized (91.3% vs. 90%) due to ambi-
guity of capture moves

— Chess move response time was lower then predicted due to flux of standard chess moves vs.

capture moves (24 sec vs. 30 sec)

5.5 Full Game Evaluation

To evaluate the system’s overall performance, ten full-length games were played between the robot
and a human opponent. These games were conducted under controlled lighting conditions to mini-

mize external variables.

Performance Overview Out of the ten games, the robot successfully completed eight games
without any move errors. In these successful games, the system demonstrated consistent perfor-
mance, correctly detecting player moves and executing the robot’s responses with high precision.
The average game length was approximately 40 moves, and each game took around 25 to 30 minutes

to complete.

6. CONCLUSION AND FUTURE WORK 19

Success Scenarios The successful games were characterized by:

— Accurate Move Detection: Standard moves were detected correctly in all games.
— Robust Move Execution: The robot performed piece captures accurately, correctly handling
situations where a captured piece needed to be moved to the side.

— Efficient Response: The system responded to engine moves with some noticeable delay.

Failure Cases and Error Analysis Two games did not complete successfully due to move

detection errors. These errors were primarily caused by:

— Capture Ambiguity: In one game, a white bishop captured a black bishop, but due to sim-
ilar board states before and after the move, the system incorrectly assumed the white bishop
captured a black pawn.

— Lighting Variation: In another instance, shadows caused false positive detection, where a

piece was incorrectly identified as having moved.

Insights and Lessons Learned The full game evaluations demonstrated that the system is
generally reliable for standard moves and captures. However, challenges remain when dealing with
ambiguous move situations, especially in scenarios where board states before and after the move
are visually similar. This highlights the need for enhanced vision algorithms that incorporate not

only piece presence but also piece type and color recognition.

6 Conclusion and Future Work

6.1 Conclusion

The development and implementation of a chess-playing robotic system integrating computer vision,
machine learning, and robotic arm control has demonstrated the potential for real-time human-
robot interaction in a strategic game environment. The system successfully achieved its primary
goal of playing chess over a physical board by detecting human moves, computing optimal responses
via a chess engine, and executing moves using an OpenManipulator-X robotic arm.

The primary successes of the project include:

— High accuracy in detecting piece presence and position using an SVM-based vision model.

20 L. Franco

— Real-time move detection with sufficient robustness to handle standard and complex chess
moves.

— Reliable robotic arm execution of detected moves, with minimal errors during standard game-

play.

Through extensive testing, the system proved capable of performing reliably under consistent
lighting conditions, detecting human moves with an high accuracy. This demonstrates the effective-
ness of the SVM classifier for binary piece presence detection. Additionally, the physical execution
of moves using the robotic arm demonstrated a high level of accuracy, particularly when using
pre-calibrated joint configurations.

However, despite achieving these main objectives, the system still faces challenges, particularly
in scenarios involving capture ambiguity and lighting variations. Some moves, particularly those
where a capture results in an identical board state post-capture, led to errors in move prediction.
Also, the system’s reliance on hard-coded joint configurations limits its adaptability to different
board setups and environments. These limitations indicate the need for further refinement in both
the vision and control aspects of the system to enhance robustness and generalization.

Beyond the technical challenges, the project demonstrated the complexity of integrating vision-
based perception with robotic control. The primary lesson learned was that achieving reliable per-
formance in real-world conditions requires practical considerations like camera positioning, lighting,

and stable calibration methods.

6.2 Future Work

Several promising avenues exist to explore for enhancing the current system’s performance and
generalization. The primary improvements will focus on advanced vision models, more dynamic

robotic control, and enhanced communication between vision and control components.

Advanced Vision Models To fully address the issue of ambiguous captures, the system would
benefit from a machine learning vision model capable of not only detecting piece presence but also
classifying piece type and color. One potential solution could involve utilizing a depth or 3D camera

to extract more spatial information for vision model training. Another promising approach would

6. CONCLUSION AND FUTURE WORK 21

be to employ a convolutional neural network (CNN) model specifically designed for multi-class

classification.

To investigate this approach, I tested a YOLO-based model trained on a publicly available
dataset consisting of approximately 2,000 labeled images of a chess board from various angles.
These images were annotated with bounding boxes specifying the piece type, color, and position on
the board. The goal was to evaluate whether a deep learning model trained on this dataset could

generalize to my specific physical setup.

After training the model, I ran it in real time through my webcam to see how well it could detect
and classify pieces on my physical board. Unfortunately, the results were less than satisfactory. It
did not correctly identify any of the pieces type or class and the bounding box predictions were

accurate for a few pieces on the board.

The main takeaway from this experiment is that the model lacked specific training data with my
board and pieces. My recommendation for future improvement would be to collect a large number
of images directly from the specific chessboard and piece set used in the project. Capturing images
under various lighting conditions and from different angles would help create a comprehensive
and robust dataset. With proper labeling of these images to include piece type, color, and precise

bounding box coordinates.

Such a customized dataset would likely enhance the YOLO model’s ability to generalize to
the real-world environment and improve the overall robustness of piece detection. Integrating this

vision model with the current robotic system would essentially fix the issue of ambiguous captures.

Another critical aspect of YOLO integration would be the detection of bounding boxes that
accurately encapsulate each piece. By using bounding box coordinates, it would be possible to dy-
namically adjust the robotic arm’s grasping position. This would significantly reduce the likelihood
of capture errors where the board has been slightly moved from the original square joint position

calibrations.

Direct Python-to-Robot Communication Currently, the system relies on a multi-step commu-
nication pipeline to execute chess moves using the OpenManipulator-X robotic arm. This pipeline,

introduces latency due to the intermediary steps involved of the reliance on a C++ node to re-

22 L. Franco

lay commands. Streamlining this communication process would significantly improve the system’s
responsiveness and reduce delays during gameplay.

Current Communication Workflow:

1. The Python-based vision system detects a move and determines the target joint positions re-
quired to execute it.

2. The Python script publishes a joint trajectory message to a custom ROS topic via a ROS
publisher.

3. The message is received by a ROS subscriber implemented in the C++ control node.

4. The C++ node processes the received message and translates the joint angle data into movement
commands.

5. The C++ node then communicates these commands to the OpenManipulator-X’s controller via
the Dynamixel SDK, which sends the actual motor control signals to the arm.

6. The arm then moves to the calculated joint positions as specified by the controller.

Implementing the direct communication between the Python script and the OpenManipulator-
X controller would bypass the intermediate C++ node. This reduces the number of data handoffs
and minimizes latency. This current communication pipeline setup is the reason for the most delay
during robot move execution. The direct approach would allow the Python script to send joint
commands directly to the ROS topics controlling the arm. By eliminating the extra layer of C++

processing, the system would not only become more efficient, but also easier to maintain.

Adaptive Calibration For the current system, you need to start by calibrating the four corners
of the chessboard relative to the webcam frame. This manual process requires the user to click on
the four corner points, which are then used to interpolate the positions of all 64 squares. While
this method works well when the board remains stationary, any accidental shifts or changes in
camera angle can cause misalignment, leading to inaccuracies in move detection and robotic arm
positioning.

To make the system more resilient to such changes, adaptive calibration methods can be in-
tegrated. One promising approach would be to use visual markers or color-coded edges on the
chessboard itself. By embedding distinct color patches at each of the four corners (e.g., red, green,

blue, yellow), the system could dynamically locate the corners even if the board is slightly moved.

6. CONCLUSION AND FUTURE WORK 23

This would all be done in real-time as once the system detects a change in the marker positions, it

will recalculate the perspective transformation matrix to update the positions of the 64 squares.

6.3 Final Remarks

The chess-playing robot system successfully demonstrated the integration of vision, decision-making,
and robotic manipulation for a complex task. It highlighted both the technical challenges and the
rewarding outcomes of combining machine learning with robotics. The project provided valuable
insights into the balance between model complexity and real-time performance, while also empha-
sizing the importance of having a robust and adaptable system.

While the current implementation has its limitations, it lays a strong foundation for future
improvements. By incorporating advanced vision models and enhancing the integration between
the vision and control components, the system can evolve into a more robust and adaptable chess-

playing robot.

24 L. Franco

References

1. M. Blume. Arena chess gui. http://www.playwitharena.de/, 2015.

[\)

. S. Contributors. Stockfish - open source chess engine. https://stockfishchess.org/, 2025.
. 0. S. R. Foundation. Robot operating system (ros). https://www.ros.org/, 2025.

3
4. B. Harirakul. Chessrobotarm. https://github.com/harirakul/ChessRobotArm, 2022.

ot

. Husarion. Openmanipulator-x on husarion. https://github.com/husarion/open_

manipulator_x, 2025.

(=)

. P. Manceron. Ikpy. https://doi.org/10.5281/zenodo.13256291, Aug. 2024.

-3

. ROBOTIS. Openmanipulator-x overview. https://emanual .robotis.com/docs/en/

platform/openmanipulator_x/overview/, 2025.

